An evaluation of force-field treatments of aromatic interactions.
نویسندگان
چکیده
Experimental measurements of edge-to-face aromatic interactions have been used to test a series of molecular mechanics force fields. The experimental data were determined for a range of differently substituted aromatic rings using chemical double mutant cycles on hydrogen-bonded zipper complexes. These complexes were truncated for the purposes of the molecular mechanics calculations so that problems of conformational searching and the optimisation of large structures could be avoided. Double-mutant cycles were then carried out in silico using these truncated systems. Comparison of the experimental aromatic interaction energies and the X-ray crystal structures of these truncated complexes with the calculated data show that conventional molecular mechanics force fields (MM2, MM3, AMBER and OPLS) do not perform well. However, the XED force field which explicitly represents electron anisotropy as an expansion of point charges around each atom reproduces the trends in interaction energy and the three-dimensional structures exceedingly well. Collapsing the XED charges onto atom centres or the use of semi-empirical atom-centred charges within the XED force field gives poor results. Thus the success of XED is not related to the methods used to assign the atomic charge distribution but can be directly attributed to the use of off-atom centre charges.
منابع مشابه
Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance
Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/pi interactions. Ab initio interaction energies for 20 carbohydrate-aromatic complexes taken from 6 selected ultra-high resolution X-ray structur...
متن کاملA theoretical study on halogen-π interactions: X-C2-Y…C8H8 complexes
M06-2X functional was employed to study halogen-π interactions in X-C2-Y…C8H8 complexes (X, Y=H, F, Cl, and Br). In fact, interactions of mono- or di-halogenated acetylenes and planar cyclooctatetraene as an anti-aromatic π system were considered. Relationship between binding energies of the complexes and charge transfer effects was investigated. Also, electronic charge density values were calc...
متن کاملMP2 study on the variation of stacking interactions in aniline and some para substituted aniline systems
The use of appropriate level of theories for studying weak van der Waal interactions such as 8-8stacking interactions of aromatic molecules has been an important aspect, since the high levelmethods have limitations for application to large molecules. The differences in the stacking energiesof various aromatic molecular structures are found significant. It is also very important for identifyingt...
متن کاملبلورهای مایع در بر دارنده ی نانو ذرات و نیرو های القایی
After a short review of nematic liquid crystals and their interactions with the external fields, we investigate the effect of a disordered field which destabilizes the orientational molecular order of a nematic film. We analyze the effect of the disorder in the applied field on the pseudo-Casimir force which is induced due to thermal fluctuationsbetween the confining walls of the nematic film. ...
متن کاملPolarizable Multipole-Based Force Field for Aromatic Molecules and Nucleobases
Aromatic molecules with π electrons are commonly involved in chemical and biological recognitions. For example, nucleobases play central roles in DNA/RNA structure and their interactions with proteins. The delocalization of the π electrons is responsible for the high polarizability of aromatic molecules. In this work, the AMOEBA force field has been developed and applied to 5 regular nucleobase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 8 13 شماره
صفحات -
تاریخ انتشار 2002